Theoretical study of the photoelectron spectra of 1,3-Pentadiyne 科學教育與應用學系 陳怡茹 指導教授 張嘉麟 教授

We used density functional theory B3LYP, PBE0, ω B97XD, and APFD methods with the aug-cc-pVTZ basis set to calculate the equilibrium structure and vibration frequency of the 1, 3-pentadiyne molecule and cation. We also calculated the Frank–Condon factor using the harmonic oscillator model developed in our laboratory. We then simulated the photoelectron spectrum of the 1, 3-pentadiyne molecule when it stripped electrons to form cations and compared it with the experimental spectrum.

 $\Delta R(C5, C6) = 2.89$

 $\Delta R(C1,H5) = -3$

R(C1,C5)

∆R(C1,H5) = -2.93

 $\Delta R(C1,H2) = 0.12$

Bond (R)

 $\Delta R(C5, C6) = 3.06$

R(C1,H3) R(C1,C5) R(C6,C7) R(C8,H9)

Bond (R)

 $\Delta R(C6, C7) = -4.07$

R(C8,H9)

 $\Delta R(C6, C7) = -4.69$

(a)

∆R (pm)

(c)

∆R (pm)

 $\Delta R(C1,H2) = 1.08$

• Results and Discussion

Equilibrium Structures

$$9 - 8 = 7 - 6 = 5 - 1^3$$

Table 1. The equilibrium structures calculated by different methods.

	Method									
_	B3LYP X X+ 109.16 110.24 109.16 109.31 109.16 109.32 109.16 109.32 145.05 142.05 120.69 123.58 136.35 132.28 120.54 122.67 106.11 107.00 107.9 107.3 107.9 107.3		PB	E0	ωB9	7XD	APFD			
Parameter	Х	X+	Х	X+	Х	X+	Х	X+		
R(C1,H2)	109.16	110.24	109.24	110.32	109.00	109.12	109.27	110.36		
R(C1,H3)	109.16	109.31	109.24	109.36	109.00	109.98	109.27	109.43		
R(C1,H4)	109.16	109.32	109.24	109.43	109.00	109.14	109.27	109.44		
R(C1,C5)	145.05	142.05	144.52	141.55	145.18	142.25	144.61	141.59		
R(C5,C6)	120.69	123.58	120.69	123.61	120.12	123.18	120.69	123.61		
R(C6,C7)	136.35	132.28	136.33	132.17	137.16	132.47	136.24	132.14		
R(C7,C8)	120.54	122.67	120.52	122.71	120.00	122.24	120.56	122.75		
R(C8,H9)	106.11	107.00	106.33	107.22	106.20	107.07	106.34	107.22		
A(H2,C1,H3)	107.9	107.3	108.0	107.6	108.3	107.8	108.0	107.3		
A(H2,C1,H4)	107.9	107.3	108.0	107.2	108.3	111.5	108.0	107.3		
A(H2,C1,C5)	111.0	107.9	110.9	107.6	110.6	111.1	110.9	107.7		
A(H3,C1,H4)	107.9	111.3	108.0	111.5	108.3	107.7	108.0	111.4		
A(H3,C1,C5)	111.0	111.4	110.9	111.5	110.6	107.4	110.9	111.4		
A(H4,C1,C5)	111.0	111.4	110.9	111.2	110.6	111.0	110.9	111.4		

Fig. 1. The equilibrium structures of 1, 3-pentadiyne.

Vibrational Frequencies

Comparison

Fig. 5. The comparison plot between the photoelectron spectrum and experimental

spectrum.(FWHM=1000 cm⁻¹)

Table 3. The Franck-Condon factors calculated by B3LYP, PBE0, ωB97XD, and APFD method.

	$\mathbf{HC} \equiv \mathbf{C} - \mathbf{C} \equiv \mathbf{C} - \mathbf{C} \mathbf{H}_3 \rightarrow \mathbf{HC} \equiv \mathbf{C} - \mathbf{C} \equiv \mathbf{C} - \mathbf{C} \mathbf{H}_3^+ + \mathbf{e}^-$											
Method												
	B3LYP PBE0						ωB97XD		APFD			
$\triangle E$	FCF	State	$\triangle E$	FCF	State	$\triangle E$	FCF	State	$\triangle E$	FCF	State	
0	4.8954E-01	00	0	4.8276E-01	00	0	4.9582E-01	00	0	4.8060E-01	00	
347	7.2356E-03	18 ¹	347	9.0544E-03	18 ¹	348	8.5035E-03	18 ¹	346	8.9461E-03	18 ¹	
522	1.6487E-02	19 ²	533	1.4196E-02	19 ²	516	4.9702E-03	16 ¹	512	4.9610E-03	16 ¹	
694	3.3554E-02	131	703	3.3672E-02	13 ¹	697	4.3055E-02	131	519	1.6185E-02	19 ²	
910	7.5663E-03	172	928	5.6807E-03	172	962	2.2618E-02	11 ¹	701	3.3185E-02	131	
955	2.3680E-02	111	940	2.5108E-02	11 ¹	1279	1.3250E-02	15 ²	916	6.3144E-03	172	
1433	8.7232E-03	71	1423	8.3584E-03	71	1443	8.8871E-03	71	937	2.4415E-02	111	
2285	1.8106E-01	51	2313	1.8717E-01	51	2343	2.1745E-01	51	1422	8.1276E-03	71	
2807	6.0978E-03	5 ¹ 19 ²	2846	5.5041E-03	5 ¹ 19 ²	3040	2.3843E-02	5 ¹ 13 ¹	2307	1.8396E-01	51	
2979	1.6221E-02	5 ¹ 13 ¹	3017	1.7035E-02	5 ¹ 13 ¹	3305	9.0679E-03	5 ¹ 11 ¹	2826	6.1951E-03	5 ¹ 19 ²	
3240	8.0505E-03	5 ¹ 11 ¹	3253	8.9363E-03	5 ¹ 11 ¹	3622	5.8112E-03	5 ¹ 15 ²	3008	1.6583E-02	5 ¹ 13 ¹	
4570	3.1744E-02	5 ²	4626	3.4509E-02	5 ²	4686	4.5624E-02	5 ²	3244	8.5484E-03	5 ¹ 11 ¹	
						5383	6.2191E-03	5 ² 13 ¹	4614	3.3436E-02	5 ²	
						7029	6.0874E-03	5 ³				

Table 2. The harmonic vibrational frequency calculated by B3LYP, PBE0, ωB97XD, and APFD /aug-cc-pVTZ.

		B3I		PBE0				ωB97XD				APFD				
mode	frequency	Symmetry species														
	Х		X+		Х		X+		Х		X+		Х		X+	
1	3468	А	3383	А	3480	А	3393	А	3480	А	3393	А	3476	А	3390	А
2	3078	Α	3044	А	3112	Α	3084	А	3128	А	3104	А	3102	А	3070	А
3	3078	А	3040	А	3112	Α	3066	А	3128	А	3088	А	3102	А	3059	Α
4	3022	А	2958	А	3042	А	2982	А	3055	А	3001	А	3035	А	2972	Α
5	2343	А	2285	А	2371	А	2313	А	2403	А	2343	А	2365	А	2307	Α
6	2165	А	1997	А	2184	А	2009	А	2203	А	2017	А	2179	А	2006	А
7	1473	А	1433	А	1462	А	1423	А	1481	А	1443	А	1462	А	1422	А
8	1473	А	1349	А	1462	Α	1339	А	1481	А	1364	А	1462	А	1337	А
9	1415	А	1286	А	1402	Α	1282	А	1420	А	1321	А	1403	А	1278	А
10	1179	А	1229	А	1198	Α	1246	А	1180	А	1233	А	1194	А	1242	Α
11	1050	Α	955	А	1039	Α	940	А	1056	А	962	А	1039	А	937	Α
12	1050	А	756	А	1039	Α	755	А	1056	А	775	А	1038	А	754	А
13	680	А	694	А	690	Α	703	А	682	А	697	А	688	А	701	А
14	645	А	643	А	657	Α	654	А	682	А	677	А	653	А	651	А
15	645	А	516	А	657	А	528	А	681	А	639	А	653	А	518	А
16	529	А	514	А	533	Α	510	А	538	А	516	А	531	А	512	Α
17	529	А	455	А	533	А	464	А	538	А	497	А	531	А	458	А
18	340	А	347	А	344	Α	347	А	346	А	348	А	341	А	346	А
19	340	А	261	А	344	Α	266	А	346	А	310	А	341	А	260	А
20	147	Α	139	А	148	А	139	А	147	А	141	А	147	А	138	А
21	147	А	138	А	148	А	136	А	147	А	138	А	147	А	136	А

Conclusion

The simulated photoelectron spectrum of 1,3pentadiyne is consistent with the experimental results. The harmonic oscillator hybrid model developed by our laboratory can be used as a research tool for theoretical spectroscopy.

References

1.Chang, J.-L.; Huang, C.-H.; Chen, S.-C.; Yin, T.-H.; Chen, Y.-T., An analytical approach for computing Franck-Condon integrals of harmonic oscillators with arbitrary dimensions. *Journal of Computational Chemistry* **2013**, *34*, 757-765.

2.Chang, J.-L.; Chen, H.-Y.; Huang, Y.-J., Reassignment of the Photoelectron Spectrum of Methylketene Using a Hybrid Model of Harmonic and Anharmonic Oscillators to Compute Franck– Condon Factors. ACS Omega 2023, 8, 40685-40694.

3.Brogli, F.; Heilbronner, E.; Hornung, V.; Kloster-Jensen, E., Die Photoelektronen-Spektren methyl-substituierter Acetylene. Helv. Chim. Acta 1973, 56 (7), 2171-2178.